
Query Optimization: A single query can be executed through different

algorithms or re-written in different forms and structures. Hence, the question of query
optimization comes into the picture – Which of these forms or pathways is the most
optimal? The query optimizer attempts to determine the most efficient way to execute a
given query by considering the possible query plans.

Importance: The goal of query optimization is to reduce the system resources
required to fulfill a query, and ultimately provide the user with the correct result set
faster.

 First, it provides the user with faster results, which makes the application seem
faster to the user.

 Secondly, it allows the system to service more queries in the same amount of
time, because each request takes less time than unoptimized queries.

 Thirdly, query optimization ultimately reduces the amount of wear on the
hardware (e.g. disk drives), and allows the server to run more efficiently (e.g. lower
power consumption, less memory usage).

There are broadly two ways a query can be optimized:
 Cost based: This was developed by IBM. The optimizer estimates the cost of

each processing method of the query and chooses the one with the lowest
estimate. Presently, most systems use this.

 Heuristic: Rules are based on the form of the query. Oracle used this at one
point. Presently, no system uses this.

The query optimizer has the job of selecting the appropriate indexes for acquiring data,
classifying predicates used in a query, performing simple data reductions, selecting
access paths, determining the order of a join, performing predicate transformations,
performing Boolean logic transformations, and performing subquery transformations—
all in the name of making query processing more efficient.

Heuristic and rule based optimizers:

Heuristic based optimization uses rule-based optimization approaches for query
optimization. These algorithms have polynomial time and space complexity, which is
lower than the exponential complexity of exhaustive search-based algorithms.
However, these algorithms do not necessarily produce the best query plan.

Some of the common heuristic rules are −

 Perform select and project operations before join operations. This is done by moving the
select and project operations down the query tree. This reduces the number of tuples
available for join.

https://www.sciencedirect.com/topics/computer-science/boolean-logic
https://www.sciencedirect.com/topics/computer-science/query-processing

 Perform the most restrictive select/project operations at first before the other operations.

 Avoid cross-product operation since they result in very large-sized intermediate tables.

Transaction
A transaction is an action or series of actions that are being performed by a single user

or application program, which reads or updates the contents of the database.

A transaction can be defined as a logical unit of work on the database. This may be an

entire program, a piece of a program, or a single command (like the SQL commands

such as INSERT or UPDATE), and it may engage in any number of operations on the

database. In the database context, the execution of an application program can be

thought of as one or more transactions with non-database processing taking place in

between.

Example of a Transaction in DBMS

A simple example of a transaction will be dealing with the bank accounts of two users,

let say Scott and Smith. A simple transaction of moving an amount of 5000 from Scott to

Smith engages many low-level jobs. As the amount of Rs. 5000 gets transferred from

the Scott’s account to Smith’s account, a series of tasks gets performed in the

background of the screen.

This straightforward and small transaction includes several steps: decrease Smith's

bank account from 5000:
Open_Acc (Scott

OldBal = Scott.al

NewBal = OldBal - 5000

Ramt.al = NewBal

CloseAccount(Scott

You can say, the transaction involves many tasks, such as opening the account of

Scott, reading the old balance, decreasing the specific amount of 5000 from that

account, saving new balance to an account of Scott, and finally closing the transaction

session.

For adding amount 5000 in Smith’s account, the same sort of tasks needs to be done:

OpenAccount(Smitht

Old_Bal = Smitht.al

NewBal = OldBal + 1000

Ahmedt.al = NewBal

CloseAccount(Bt

Properties of Transaction

There are properties that all transactions should follow and possess. The four basic are

in combination termed as ACID properties. ACID properties and its concepts are as

follows:

 Atomicity: The 'all or nothing' property. A transaction is an indivisible entity that
is either performed in its entirety or will not get performed at all. This is the
responsibility or duty of the recovery subsystem of the DBMS to ensure atomicity.

 Consistency: A transaction must alter the database from one steady-state to
another steady state. This is the responsibility of both the DBMS and the application
developers to make certain consistency. The DBMS can ensure consistency by putting
into effect all the constraints that have been mainly on the database schema such as
integrity and enterprise constraints.

 Isolation: Transactions that are executing independently of one another is the
primary concept followed by isolation. In other words, the frictional effects of
incomplete transactions should not be visible or come into notice to other transactions
going on simultaneously. It is the responsibility of the concurrency control sub-system
to ensure adapting the isolation.

 Durability: The effects of an accomplished transaction are permanently recorded
in the database and must not get lost or vanished due to subsequent failure. So this
becomes the responsibility of the recovery sub-system to ensure durability.

	Example of a Transaction in DBMS
	Properties of Transaction

